Even faster integer multiplication

نویسندگان

  • David Harvey
  • Joris van der Hoeven
  • Grégoire Lecerf
چکیده

We give a new proof of Fürer's bound for the cost of multiplying n-bit integers in the bit complexity model. Unlike Fürer, our method does not require constructing special coecient rings with fast roots of unity. Moreover, we prove the more explicit bound O(n logn K log n) with K = 8. We show that an optimised variant of Fürer's algorithm achieves only K = 16, suggesting that the new algorithm is faster than Fürer's by a factor of 2 log n. Assuming standard conjectures about the distribution of Mersenne primes, we give yet another algorithm that achieves K = 4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zot-binary: a New Numbering System with an Application on Big-integer Multiplication

In this paper we present a new numbering system with an efficient application on Big-Integer multiplication. The paper starts with an introduction to a new redundant positional numbering system known as “Big-Digit Numbering System” (BDNS). With BDNS, a new non-redundant positional numbering system known as ZOT-Binary is proposed. ZOT-Binary has a low Hamming weight with an average of 23.8% nonz...

متن کامل

Fast Truncated Multiplication and its Applications in Cryptography

Truncated Multiplication computes a truncated product, a contiguous subsequence of the digits of the product of 2 long integers. We review a few truncated multiplication algorithms and adapt them to integers. They are a constant times faster than n-digit full multiplications of time complexity O(n), with 1< α ≤ 2, important in cryptography. For example, the least significant half products with ...

متن کامل

Applications of Fast Truncated Multiplication in Embedded Cryptography

Truncated Multiplications compute Truncated Products, contiguous subsequences of the digits of integer products. For an n-digit multiplication algorithm of time complexity O(n), with 1< α ≤ 2, there is a truncated multiplication algorithm, which is constant times faster when computing a short enough truncated product. Applying these fast truncated multiplications several cryptographic long inte...

متن کامل

Applications of Fast Truncated Multiplication in Cryptography

Truncated multiplications compute truncated products, contiguous subsequences of the digits of integer products. For an n-digit multiplication algorithm of time complexity O(nα), with 1 < α ≤ 2, there is a truncated multiplication algorithm, which is constant times faster when computing a short enough truncated product. Applying these fast truncated multiplications, several cryptographic long i...

متن کامل

Hermite and Smith Normal Forms ofTriangular Integer Matrices

This paper considers the problem of transforming a triangular integer input matrix to canonical Hermite and Smith normal form. We provide algorithms and prove deterministic running times for both transformation problems that are linear (hence optimal) in the matrix dimension. The algorithms are easily implemented, assume standard integer multiplication, and admit excellent performance in practi...

متن کامل

Multiple Precision Integer Multiplication on GPUs

This paper addresses multiple precision integer multiplication on GPUs. In this paper, we propose a novel data-structure named a product digit table and present a GPU algorithm to perform the multiplication with the product digit table. Experimental results on a 3.10 GHz Intel Core i3-2100 CPU and an NVIDIA GeForce GTX480 GPU show that the proposed GPU algorithm respectively runs over 71.4 time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2016